ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Chebyshev neural network-based model for dual-junction solar cells

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Chebyshev neural network-based model for dual-junction solar cells
นักวิจัย : Patra, Jagdish Chandra
คำค้น : DRNTU::Engineering::Computer science and engineering::Computer applications::Physical sciences and engineering.
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2554
อ้างอิง : Patra, J. C. (2011). Chebyshev Neural Network-Based Model for Dual-Junction Solar Cells. IEEE Transactions on Energy Conversion, 26(1), 132-139. , 0885-8969 , http://hdl.handle.net/10220/7096 , http://dx.doi.org/10.1109/TEC.2010.2079935 , 156797
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : IEEE transactions on energy conversion
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Design and development process of solar cells can be greatly enhanced by using accurate models that can predict their behavior accurately. Recently, there has been a surge in research efforts in multijunction (MJ) solar cells to improve the conversion efficiency. Modeling of MJ solar cells poses greater challenges because their characteristics depend on the complex photovoltaic phenomena and properties of the materials used. Currently, several commercial complex device modeling software packages, e.g., ATLAS, are available. But these software packages have limitations in predicting the behavior of MJ solar cells because of several assumptions made on the physical properties and complex interactions. Artificial neural networks have the ability to effectively model any nonlinear system with complex mapping between its input and output spaces. In this paper, we proposed a novel Chebyshev neural network (ChNN) to model a dual-junction (DJ) GaInP/GaAs solar cell. Using the ChNN, we have modeled the tunnel junction characteristics and developed models to predict the external quantum efficiency, and I-V characteristics both at one sun and at dark levels. We have shown that the ChNN-based models perform better than the commercial software, ATLAS, in predicting the DJ solar cell characteristics.

บรรณานุกรม :
Patra, Jagdish Chandra . (2554). Chebyshev neural network-based model for dual-junction solar cells.
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Patra, Jagdish Chandra . 2554. "Chebyshev neural network-based model for dual-junction solar cells".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Patra, Jagdish Chandra . "Chebyshev neural network-based model for dual-junction solar cells."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2554. Print.
Patra, Jagdish Chandra . Chebyshev neural network-based model for dual-junction solar cells. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2554.